

Spanmaster ® Release 3.1 Sag / Tension Computations 09/01/11 Waveguide

Waveguide River and Rail Crossings

Selected Cables	X-SECT AREA (sq.in)	EFF MODULUS (psi)	NOMINAL DIAM (in)	EFF.EXP. COEFF. (1/F)	CABLE WEIGHT (lb/ft)	E*A LOAD BEARING CAPACITY (lbs)	MAX. RATED LOAD (lbs)
1/4"6.6mEHS ORF-O-288-LN Bundle	0.0352 0.5782	2.60E+07 2.70E+05	0.250 0.858 1.108	5.60E-06 1.13E-05	0.1210 0.1960 0.3170	155982	6650 651

NESC RESULTS

Loading Condition	Temp. (F)	Ice Load Ib/ft	Ice Thick in	Wind Constant lb/ft	Horz Wind Load lb/sq ft	Result Load + Const lb/ft	Sag ft	Tension	% Len Chg From Input Conditions	Sag @ Point 150 ft	Horz Sag Comp ft	Vert Sag Comp ft	Vector Angle Deg	
Rule 251 - Heavy	0.0	1.000	.50	.3	4.0	1.793	7.32	2749	0.13	7.34	3.44	6.45	28.1	
232Δ1	120.0	0.000	OΩ	0	0.0	0.317	3.50	1018	0.01	3.50	0.00	3.50	0.0	

20271	120.0 0.000	.00	.0	0.0	0.017	0.00	1010	0.01	0.00	0.00 0.0
					Te	np	Midspar	Tension	% Length	Clearance
Span L	.ength = 300.00 ft				(F)	Sag (ft)	(lb)	Change	
Span S	Sag = 3.00 ft (36.0 in)	1								
Span T	ension = 1,189 lb				-40	0.0	2.18	1,632	-0.01	N/A
N	1ax Load = 6,650 lb				-30	0.0	2.24	1,589	-0.01	N/A
	Usable load (60%) =		lb			0.0	2.30	1,545	-0.01	N/A
Catena	ary Length = 300.080	ft			-10	0.0	2.37	1,503	-0.01	N/A
	Free Length @				اد)	2.43	1,461	-0.01	N/A
Ins	talled Temperature =	299.69	1 ft		10	.0	2.51	1,419	-0.01	N/A
					20	.0	2.58	1,378	-0.01	N/A
	led Strand				30	.0	2.66	1,338	-0.01	N/A
		0.46 %			40	.0	2.74	1,299	0.00	N/A
Ten	sion = 995 lb				50	.0	2.82	1,261	0.00	N/A
					60	.0	2.91	1,223	0.00	N/A
					70	.0	3.00	1,186	0.00	N/A
					80	.0	3.09	1,151	0.00	N/A
					90	.0	3.19	1,116	0.00	N/A
					10	0.0	3.29	1,082	0.01	N/A
					110	0.0	3.39	1,050	0.01	N/A
					12	0.0	3.50	1,018	0.01	N/A
					13	0.0	3.60	988	0.01	N/A
					14	0.0	3.71	959	0.01	N/A

E-3A/57 - T-3136/6

(Existing joint owned utility pole (PSNH/Fairpoint) in existing Right-of-Way)

(Incorrectly labeled in make ready notes as E-3A/57 - T-NT) Windham, NH

E-236/56 - T-3136/5

(Existing joint owned utility pole (PSNH/Fairpoint) in existing Right-of-Way)

(Incorrectly labeled in make ready notes as E-236/56 - T-3136/6) Hudson, NH

E-236/56 - T-3136/5

New Hampshire Optical Systems, Inc. 99 Pine Hill Rd. Nashua, NH 03063 (603-821-6467)

Proposed **River Crossing** Windham, NH

- The heights of structures shown hereon are Nikon 362 total station during a site survey on
- The horizontal distance between the nearest box culvert edge and the existing overhead
- Because of the close horizontal proximity to the existing box culvert, the simplified drawing is submitted with vertical distances measured to the structure. This process simplifies the preparation and review of the crossing without jeopardizing its intent to protect the safe usage of the waterway
- The smallest vertical distance from the top of existing box culvert to the lowest existing overhead wires is 21'.
- The vertical distance between the top of water and top of box culvert is approximately
- Vertical distances are representative of attachment heights after utility make ready

Project # TID-236 - Primary 18

Proposed River Crossing Hudson/Windham, NH

Location: Haverhill Rd., Windham, NH Nearest cross street- Central St.

Sheet 2 of 2

E-3A/57 - T-3136/6

Construction Notes:

NHOS proposes to install a ¼ inch metal supporting strand between the existing utility poles shown above that will traverse the river. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each note using double dead end attachments to prevent any sag in the wire and maintain proper clearances. NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole

Spanmaster ® Release 3.1 Sag / Tension Computations

Waveguide River and Rail Crossings

						E*A LOAD	MAX.
	X-SECT	EFF	NOMINAL	EFF.EXP.	CABLE	BEARING	RATED
	AREA	MODULUS	DIAM	COEFF.	WEIGHT	CAPACITY	LOAD
Selected Cables	(sq.in)	(psi)	(in)	(1/F)	(lb/ft)	(lbs)	(lbs)
1/4"6.6mEHS	0.0352	2.60E+07	0.250	5.60E-06	0.1210	914940	6650
ORF-O-288-LN	0.5782	2.70E+05	0.858	1.13E-05	0.1960	155982	651
Bundle			1.108		0.3170		

NESC RESULTS

					Horz	Result			% Len	Sag @	Horz	Vert	
Loading		Ice	Ice	Wind	Wind	Load	Sag	Tension	Chg From	Point	Sag	Sag	Vector
Condition	Temp.	Load	Thick	Constant	Load	+ Const			Input	123.5	Comp	Comp	Angle
	(F)	lb/ft	ín	lb/ft	lb/sq ft	lb/ft	ft	lb	Conditions	ft	ft	ft	Deg
Rule 251 - Heavy	0.0	1.000	.50	.3	4.0	1.793	5.70	2391	0.12	5.72	2 69	5.03	28 1
raio zo i iloavy	0.0	1.000	.00		1.0	1.100	0.10		0.12	0.12	2.00	0.00	20.1
232A1	120.0	0.000	.00	Ω	0.0	0.317	2.94	822	0.01	2.94	0.00	2.94	0.0

Span Length = 247.00 ft	Temp (F)	Midspan Sag (ft)	Tension (lb)	% Length Change	Clearance
Span Sag = 2.47 ft (29.6 in) Span Tension = 979 lb Max Load = 6,650 lb Usable load (60%) = 3,990 lb Catenary Length = 247.066 ft	-40.0 -30.0 -20.0 -10.0	1.71 1.76 1.82 1.88	1,412 1,368 1,325 1,283	-0.01 -0.01 -0.01 -0.01	N/A N/A N/A N/A
Stress Free Length @ Installed Temperature = 246.802 ft	.0	1.94	1,242	-0.01	N/A
Unloaded Strand Sag = 1.17 ft (14.0 in) 0.47 % Tension = 789 lb	10.0	2.01	1,201	-0.01	N/A
	20.0	2.08	1,161	-0.01	N/A
	30.0	2.15	1,122	-0.01	N/A
	40.0	2.22	1,084	-0.01	N/A
	50.0	2.30	1,048	0.00	N/A
	60.0	2.39	1,012	0.00	N/A
	70.0	2.47	977	0.00	N/A
	80.0	2.56	944	0.00	N/A
	90.0	2.65	911	0.00	N/A
	100.0	2.74	881	0.00	N/A
	110.0	2.84	851	0.01	N/A
	120.0	2.94	822	0.01	N/A
	130.0	3.04	795	0.01	N/A
	140.0	3.14	769	0.02	N/A

E-103/21 - T-3/30(Existing joint owned utility pole (UNITIL/Fairpoint) in existing Right-of-Way)

E-103/22 - T-3/31(Existing joint owned utility pole (UNITIL/Fairpoint) in existing Right-of-Way)

Proposed

New Hampshire Optical Systems, Inc.

99 Pine Hill Rd. Nashua, NH 03063 (603-821-6467)

Notes:

- The heights of structures shown hereon are based on field measurements taken with a Nikon 362 total station during a site survey or
- The horizontal distance between the nearest bridge edge and the existing overhead wires ranges from 15' to 16'.
- The smallest vertical distance from the top of existing bridge deck to the lowest existing
- The vertical distance between the top of water and bridge deck is approximately 49'.
- The waterway is classified as not suitable for sail boating and per NESC Table 232-1 a vertical clearance of 14' must be maintained between the lowest conductor and 10 year
- Based on the FEMA Flood Profile for the Little River (Page 103P) and the Flood Insurance Rate Map for Rockingham County (Map Number 33015C0578E) dated May 17, 2005 the delta between the river bed and the 10 year flood elevation is approximately 7'. A 14' buffer (for non-navigable streams) was added to that . Based on the FEMA Flood Profile the stream bed elevation is 31.5' and the 10 year flood elevation is 38.5'.
- Vertical distances are representative of attachment heights after utility make ready moves are completed.
- The poles are mislabeled in the field. The poles shown hereon are located on electrical route 103, not route 130 as the labels on the

Project # TID-243 - Primary 18 Drawing # AC-PLA-RIV-1

Proposed River Crossing Plaistow, NH

Main St., Plaistow, NH Nearest cross street- Hillsdale Ave.

Sheet 2 of 2

Construction Notes:

NHOS proposes to install a ¼ inch metal supporting strand between the existing utility poles shown above that will traverse the river. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each pole using double dead end attachments to prevent any sag in the wire and maintain proper clearances. NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole

 $K: \Pr jects \USNH\dwgs \Pr jects \USNH\dwgs \Plaistow \river - xings \tid - 243 \tid - 243. dwg$

Spanmaster ® Release 3.1 Sag / Tension Computations 09/01/11 Waveguide

River and Rail Crossings

Waveguide

Selected Cables	X-SECT AREA (sg.in)	EFF MODULUS (psi)	NOMINAL DIAM (in)	EFF.EXP. COEFF. (1/F)	CABLE WEIGHT (lb/ft)	E*A LOAD BEARING CAPACITY (lbs)	MAX. RATED LOAD (lbs)
1/4"6.6mEHS	0.0352	\' /	` '	5.60E-06	0.1210	, ,	6650
ORF-O-288-LN	0.5782	2.70E+05	0.858	1.13E-05	0.1960	155982	651
Bundle			1.108		0.3170		

NESC RESULTS

Loading Condition	Temp. (F)	Ice Load Ib/ft	Ice Thick in	Wind Constant lb/ft	Wind Load lb/sq ft	Load + Const lb/ft	Sag ft	Tension lb	Chg From Input Conditions	Point 128 ft	Sag Comp ft	Sag Comp ft	Vector Angle Deg
Rule 251 - Heavy 232A1		1.000 0.000	.50 .00	.3 .0		1.793 0.317			0.12 0.01	5.99 3.04		5.27 3.03	

	Temp	Midspan	Tension	% Length	Clearanc
Span Length = 256.00 ft Span Sag = 2.56 ft (30.7 in)	(F)	Sag (ft)	(lb)	Change	Olearand
Span Tension = 1,014 lb	-40.0	1.79	1,449	-0.01	N/A
Max Load = 6,650 lb	-30.0	1.84	1,406	-0.01	N/A
Usable load (60%) = 3,990 lb	-20.0	1.90	1,363	-0.01	N/A
Catenary Length = 256.068 ft	-10.0	1.96	1,321	-0.01	N/A
Stress Free Length @	.0	2.03	1,279	-0.01	N/A
Installed Temperature = 255.785 ft	10.0	2.09	1,238	-0.01	N/A
	20.0	2.16	1,198	-0.01	N/A
Unloaded Strand	30.0	2.24	1,159	-0.01	N/A
Sag = 1.20 ft (14.4 in) 0.47 %	40.0	2.31	1,121	0.00	N/A
Tension = 824 lb	50.0	2.39	1,084	0.00	N/A
	60.0	2.47	1,048	0.00	N/A
	70.0	2.56	1,013	0.00	N/A
	80.0	2.65	979	0.00	N/A
	90.0	2.74	946	0.00	N/A
	100.0	2.84	915	0.01	N/A
	110.0	2.93	884	0.01	N/A
	120.0	3.03	855	0.01	N/A
	130.0	3.13	828	0.01	N/A
	140.0	3.24	801	0.02	N/A

E-117/76 - T-NT(Existing joint owned utility pole (UNITIL/Fairpoint) in existing Right-of-Way)

E-117/75 - T-NT(Existing joint owned utility pole (UNITIL/Fairpoint) in existing Right-of-Way)

moves are completed.

New Hampshire Optical Systems, Inc.

Proposed **River Crossing** Plaistow, NH

The heights of structures shown hereon are based on field measurements taken with a

Nikon 362 total station during a site survey on

The horizontal distance between the nearest bridge edge and the existing overhead wires is approximately 12'.

The smallest vertical distance from the top of existing bridge deck to the lowest existing

The vertical distance between the top of water and bridge deck is approximately 13'. The waterway is classified as not suitable for sail boating and per NESC Table 232-1 a vertical clearance of 14' must be maintained

between the lowest conductor and 10 year

Based on the FEMA Flood Profile for the Little River (Page 103P) and the Flood Insurance Rate Map for Rockingham County (Map Number 33015C0578E) dated May 17, 2005 the delta between the river bed and the 10

year flood elevation is approximately 7'. A 14'

buffer (for non-navigable streams) was added

to that . Based on the FEMA Flood Profile the stream bed elevation is 38' and the 10 year flood elevation is 45'.

Vertical distances are representative of

attachment heights after utility make ready

overhead wires is 21'.

99 Pine Hill Rd. Nashua, NH 03063 (603-821-6467)

Notes:

Proposed River Crossing Plaistow, NH

<u>Location:</u> Plaistow Rd., Plaistow, NH Nearest cross street- Garden Rd

Sheet 2 of 2

Construction Notes:

NHOS proposes to install a ¼ inch metal supporting strand between the existing utility poles shown above that will traverse the river. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each note using double dead end attachments to prevent any sag in the wire and maintain proper clearances. NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole

 $K: \Projects\USNH\dwgs\Plaistow\river-xings\tid-244\tid-244.dwg$

New Hampshire Optical Systems, Inc. 99 Pine Hill Rd. Nashua, NH 03063 (603-821-6467)

Proposed River Crossing Nashua, NH

Project # TID-310 - Primary 18 Drawing # AC-NAS-RIV-4

Date: 06/13/12

Proposed River Crossing Nashua, NH

Location:
Canal St., Nashua, NH
Nearest cross street- Main St.

Sheet 1 of 2

Spanmaster ® Release 3.1 Sag / Tension Computations
Waveguide
River and Rail Crossings

(Not to Scale)

						E*A LOAD	MAX.
	X-SECT	EFF	NOMINAL	EFF.EXP.	CABLE	BEARING	RATED
	AREA	MODULUS	DIAM	COEFF.	WEIGHT	CAPACITY	LOAD
Selected Cables	(sq.in)	(psi)	(in)	(1/F)	(lb/ft)	(lbs)	(lbs)
1/4"6.6mEHS	0.0352	2.60E+07	0.250	5.60E-06	0.1210	914940	6650
ORF-O-288-LN	0.5782	2.70E+05	0.858	1.13E-05	0.1960	155982	651
Bundle			1.108		0.3170		

Rule 251 - Heavy 0	.0 1.000	.50	.3	4.0	1.793	5.35	2307	0.11	5.36	2.52 4.72 28.1
232A1 12	0.0 0.000	.00	.0	0.0	0.317	2.81	779	0.01	2.81	0.00 2.81 0.0
Span Length = 2 Span Sag = 2.35 Span Tension = Max Load Usable l	35.00 ft 5 ft (28.2 in 931 lb = 6,650 lb oad (60%)) = 3,990		0.0	Ter (F -40 -30 -20	np (.0 (.0	Midspan Sag (ft) 1.60 1.66 1.71	Tensior (lb) 1,361 1,318 1,275	-0.01 -0.01 -0.01	gth Clearance le N/A N/A N/A
Catenary Length	= 235.063	ft			-10	.0	1.77	1,233	-0.01	N/A
Stress Free Leng	gth @				.0)	1.83	1,192	-0.01	N/A
Installed Ten	perature =	234.82	1 ft		10 20		1.90 1.96	1,151 1,112	-0.01 -0.01	
Unloaded Strand	i				30		2.04	1.073	-0.01	
Sag = 1.12 ft Tension = 743		0.48 %			40 50	.0	2.11 2.19	1,036 999	-0.01 0.00	N/A
					60	.0	2.27	964	0.00	N/A
					70	.0	2.35	930	0.00	N/A
					80	.0	2.44	897	0.00	N/A
					90	.0	2.53	865	0.00	N/A
					100	0.0	2.62	835	0.01	N/A
					110		2.71	806	0.01	N/A
					120		2.81	779	0.01	N/A
					130	0.0	2.91	752	0.01	N/A

NHOS proposes to install a ¼ inch metal supporting strand between the existing utility poles shown above that will traverse the river. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each pole using double dead end attachments to prevent any sag in the wire and maintain proper clearances.

NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole

Project # TID-310 - Primary 18

moves are completed.

Date: 06/13/12

Proposed

New Hampshire Optical Systems, Inc.

Proposed

River Crossing Nashua, NH

1. The heights of structures shown hereon are based on field measurements taken with a

Nikon 362 total station during a site survey on

The horizontal distance between the nearest

bridge edge and the existing overhead wires

The smallest vertical distance between the lowest wire and the 10% chance flood event

The waterway is classified as not suitable for sail boating and per NESC Table 232-1 a vertical clearance of 14' must be maintained

between the lowest conductor and 10 year

Based on the FEMA Flood Profile for the

Nashua River (Page 161P) and the Flood

Insurance Rate Map for Hillsborough County (Map Number 33011.00514E) dated April 18, 2011, the delta between the river bed and the 10 year flood elevation is 18'. Based on the Flood Profile for the Nashua River (page

161P) the elevation of the stream bed is 103'

and the elevation of the 10% Chance Flood

Vertical distances are representative of attachment heights after utility make ready

99 Pine Hill Rd. Nashua, NH 03063

(603-821-6467)

Notes:

is over 200' away.

River Crossing Nashua, NH

Location:
Canal St., Nashua, NH
Nearest cross street- Main St

Sheet 2 of 2

E-201/9-1 - T-NT

Spanmaster ® Release 3.1 Sag / Tension Computations

Waveguide River and Rail Crossings

					E*A LOAD	MAX.
X-SECT	EFF	NOMINAL	EFF.EXP.	CABLE	BEARING	RATED
AREA	MODULUS	DIAM	COEFF.	WEIGHT	CAPACITY	LOAD
(sq.in)	(psi)	(in)	(1/F)	(lb/ft)	(lbs)	(lbs)
0.0352	2.60E+07	0.250	5.60E-06	0.1210	914940	6650
0.5782	2.70E+05	0.858	1.13E-05	0.1960	155982	651
		1.108		0.3170		
	AREA (sq.in) 0.0352	AREA MODULUS (sq.in) (psi) 0.0352 2.60E+07	AREA MODULUS DIAM (sq.in) (psi) (in) 0.0352 2.60E+07 0.250 0.5782 2.70E+05 0.858	AREA MODULUS DIAM COEFF. ((sq.in) (psi) (in) (1/F) 0.0352 2.60E-07 0.250 5.60E-06 0.5782 2.70E+05 0.858 1.13E-05	AREA MODULUS DIAM COEFF. WEIGHT ((sq.in) (psi) (in) (1/F) (lb/ft) 0.0352 2.60E-07 0.250 5.60E-06 0.1210 0.5782 2.70E+05 0.858 1.13E-05 0.1960	X-SECT AREA (sq.in) EFF MODULUS (psi) NOMINAL DIAM (in) EFF.EXP. COEFF. (il) CABLE WEIGHT (lbr) BEARING CAPACITY (lbr) 0.0352 0.0352 2.60E+07 2.70E+05 0.250 0.858 5.60E-06 1.13E-05 0.1210 0.1960 914940 155982

NESC RESULTS

Condition	Temp. (F)	Load lb/ft	Thick in	Constant lb/ft	Load Ib/sq ft	+ Const lb/ft	Sag ft	lb	Input Conditions	101 ft	Comp ft	Comp ft	Angle Deg
Rule 251 - Heavy 232A1		1.000 0.000				1.793 0.317				4.41 2.45	2.07 0.00		

	iemp	iviidspan	rension	% Length	Clearance
Span Length = 202.00 ft	(F)	Sag (ft)	(lb)	Change	
Span Sag = 2.02 ft (24.2 in)	` '	0 ()	` '	Ü	
Span Tension = 800 lb	-40.0	1.32	1,222	-0.02	N/A
Max Load = 6.650 lb	-30.0	1.37	1.179	-0.01	N/A
Usable load (60%) = 3,990 lb	-20.0	1.42	1,136	-0.01	N/A
Catenary Length = 202.054 ft	-10.0	1.47	1,094	-0.01	N/A
Stress Free Length @	.0	1.53	1,054	-0.01	N/A
Installed Temperature = 201.877 ft	10.0	1.59	1,014	-0.01	N/A
·	20.0	1.66	975	-0.01	N/A
Unloaded Strand	30.0	1.72	937	-0.01	N/A
Sag = 1.00 ft (12.0 in) 0.50 %	40.0	1.79	901	-0.01	N/A
Tension = 616 lb	50.0	1.86	866	0.00	N/A
	60.0	1.94	832	0.00	N/A
	70.0	2.02	799	0.00	N/A
	80.0	2.10	768	0.00	N/A
	90.0	2.19	739	0.00	N/A
	100.0	2.13	711	0.00	N/A
	110.0	2.36	684	0.01	N/A
	120.0	2.45	659	0.01	N/A
	130.0	2.54	635	0.02	N/A
	140.0	2.64	613	0.02	N/A

Construction Notes:

(Existing joint owned utility

pole (Fairpoint/National Grid)

in existing Right-of-Way)

E -261/13 - T-5701/12

NHOS proposes to install a ¼ inch metal supporting strand between the existing utility poles shown above that will traverse the river. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each pole using double dead end attachments to prevent any sag in the wire and maintain proper clearances.

NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole

(Existing joint owned utility

pole (Fairpoint/National Grid)

in existing Right-of-Way)

E -261/14 - T-5701/13

New Hampshire Optical Systems, Inc. 99 Pine Hill Rd. Nashua, NH 03063 (866-983-4237)

Proposed **River Crossing** Salem, NH

Notes:

- The heights of structures shown hereon are based on field measurements taken with a Nikon 362 total station during a site survey on 12/5/12
- The horizontal distance between the nearest bridge edge and the existing overhead wires is approximately 7'.
- Because of the close horizontal proximity to the existing bridge structure, the simplified drawing is submitted with vertical distances measured to the structure. This process simplifies the preparation and review of the crossing without jeopardizing its intent to protect the safe usage of the waterway
- The smallest vertical distance from the top of existing bridge deck to the lowest existing overhead wires is approximately 17'.
- The vertical distance between the top of water and bridge deck is approximately 9'.
- Vertical distances are representative of attachment heights after utility make ready moves are completed.

Project # TID-318 - Primary 18

Date: 12/12/12

Proposed River Crossing Salem, NH

Bluff St. Ext., Salem, NH Nearest cross street- Town Farm Rd.

Sheet 2 of 2

 $\wgf-fs1\cad\Projects\USNH\dwgs\salem\river-xings\tid-318\TID-318.dwg$

New Hampshire Optical Systems, Inc. 99 Pine Hill Rd. Nashua, NH 03063 (866-983-4237)

Proposed River Crossing Salem, NH

Project # TID-319 - Primary 18 Task ID # AC-SAL-RIV-3

Date: 12/11/12 Revision #

> Proposed River Crossing Salem, NH

Location:
Bluff St. Ext., Salem, NH
Nearest cross street- Town Farm Rd.

Sheet 1 of 2

Spanmaster ® Release 3.1 Sag / Tension Computations

Selected Cables	X-SECT AREA (sq.in)	EFF MODULUS (psi)	NOMINAL DIAM (in)	EFF.EXP. COEFF. (1/F)	CABLE WEIGHT (lb/ft)	E*A LOAD BEARING CAPACITY (lbs)	MAX. RATED LOAD (lbs)
1/4"6.6mEHS ORF-O-288-LN Bundle	0.0352 0.5782		0.250	5.60E-06 1.13E-05	0.1210 0.1960 0.3170	155982	6650 65

Waveguide River and Rail Crossings

NESC RESULTS

Loading Condition	Temp. (F)	Ice Load Ib/ft	Ice Thick in	Wind Constant lb/ft	Wind Load Ib/sq ft	Load + Const lb/ft	Sag ft	Tension Ib	Chg From Input Conditions	Point 58 ft	Sag Comp ft	Sag Comp ft	Vector Angle Deg
Rule 251 - Heavy	0.0	1.000	.50	.3	4.0	1.793	2.14	1406	0.06	2.15	1.01	1.89	28.1
232A1	120.0	0.000	.00	.0	0.0	0.317	1.48	359	0.02	1.48	0.00	1.48	0.0
Span Length = Span Sag = 1.)			Tei (F	mp =)	Midspa Sag (f		% Leng Chang		Cleara	nce
O T! 400 II-			,			41		00	0.50	0.00		N 1 7 A	

	Temp	Midspan	lension	% Length	Clearance	
Span Length = 116.00 ft	(F)	Sag (ft)	(lb)	Change		
Span Sag = 1.16 ft (13.9 in)	` '	0 ()	()	Ü		
Span Tension = 460 lb	-40.0	.63	850	-0.02	N/A	
Max Load = 6.650 lb	-30.0	.66	806	-0.02	N/A	
Usable load (60%) = 3,990 lb	-20.0	.70	764	-0.02	N/A	
Catenary Length = 116.031 ft	-10.0	.74	723	-0.02	N/A	
Stress Free Length @	.0	.78	684	-0.01	N/A	
Installed Temperature = 115.973 ft	10.0	.82	646	-0.01	N/A	
, and the second	20.0	.87	610	-0.01	N/A	
Unloaded Strand						
	30.0	.93	576	-0.01	N/A	
Sag = .68 ft (8.2 in) 0.59 %	40.0	.98	543	-0.01	N/A	
Tension = 299 lb	50.0	1.04	513	-0.01	N/A	
	60.0	1.10	485	0.00	N/A	
	70.0	1.16	459	0.00	N/A	
	80.0	1.22	436	0.00	N/A	
	90.0	1.29	414	0.01	N/A	
	100.0	1.35	394	0.01	N/A	
	110.0	1.42	376	0.01	N/A	
	120.0	1.48	359	0.02	N/A	
	130.0	1.55	344	0.02	N/A	
	140.0	1.62	330	0.03	N/A	

NHOS proposes to install a ¼ inch metal supporting strand between the existing utility poles shown above that will traverse the river. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each pole using double dead end attachments to prevent any sag in the wire and maintain proper clearances.

NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole

New Hampshire Optical Systems, Inc. 99 Pine Hill Rd. Nashua, NH 03063 (866-983-4237)

Proposed **River Crossing** Salem, NH

Notes:

- The heights of structures shown hereon are based on field measurements taken with a Nikon 362 total station during a site survey on
- The horizontal distance between the nearest bridge edge and the existing overhead wiresis
- the existing bridge structure, the simplified drawing is submitted with vertical distances measured to the structure. This process simplifies the preparation and review of the crossing without jeopardizing its intent to protect the safe usage of the waterway
- The smallest vertical distance from the top of existing bridge deck to the lowest existing overhead wires is approximately 18'.
- The vertical distance between the top of water and bridge deck is approximately 6'.
- Vertical distances are representative of attachment heights after utility make ready moves are completed.

Project # TID-319 - Primary 18

Date: 12/11/12

Proposed River Crossing Salem, NH

Bluff St. Ext., Salem, NH Nearest cross street- Town Farm Rd.

Sheet 2 of 2

