

$\mathrm{E}-103 / 22-\mathrm{T}-3 / 31$

NHOTS
New Hampshire Opical Systems, Inc.
ge Pine Hill dd
Nashua, NH O3063
$(603-811-6467)$
Proposed
River Crossing
Plaistow, NH

Notes:

The heieiths of structures shown hereon are
bsesed on field measuruenents taken with a
 10118/11
2. $\begin{aligned} & \text { The horizontal distance betwen the nearest } \\ & \text { birige e egge and the existing overhead } \\ & \text { rines }\end{aligned}$ bridge edge and the exx:
ranges foom 155 to 16 :

The vertical distance between the top of
The waterway is classified as not suitable for
sai boating and pers N SEC C Table $232-10$ serical cicearance of f14" must be maintained between the
flooodplian.

Veritial distances are erepresentative of
attachment heights after utility make ready Stachment theighte sed
$E-103 / 21-T-3 / 30$ (Existing joint owned utility pole (UNITIL/Fairpoint) in existing Right-of-Way)
$\mathrm{E}-103 / 22-\mathrm{T}-3 / 31$ (Existing joint owned utility pole (UNITIL/Fairpoint) in existing Right-of-Way) route 103 , not route 130 as the labels on the

Project \# TID-243- Primary 18 Drawing \# AC-PLAARV-1

Proposed River Crossing

Locain 5 t., Plaistow, NH
Nearest
Norss street-
Hillsdale Ave

T

LOCUS MAP

Waveguide
River and Rail Crossings

Span Length $=247.00 \mathrm{ft}$ Span $\mathrm{Sag}=2.47 \mathrm{ft}$ (29.6 in)	${ }_{\text {Temp }}^{\text {(F) }}$	$\begin{gathered} \text { Midspan } \\ \text { Sag (fi) } \end{gathered}$	$\begin{gathered} \text { Tension } \\ (\text { (1) } \end{gathered}$	\% Length ClearanceChange	
Span Tension Max Load $=6.650$ IV	${ }_{-30.0}$	${ }_{1}^{1.76}$	${ }_{1}^{1,368}$	${ }_{-0.01}^{-0.01}$	NA
Usabie load (60\%) $=3,990 \mathrm{lb}$	-20.0	1.82	${ }_{1,325}$	-0.01	
	-10.0	1.88	1,283	-0.01	NA
	0	1.94	1,242	0.01	NA
Installed Temperaiure $=246.3$	10.0	2.01	1,201	0.01	NA
Unloaded Strand $\mathrm{Sag}=1.17 \mathrm{ft}(14.0 \mathrm{in}) \quad 0.47 \%$ Tension $=789 \mathrm{lb}$	30.0	${ }_{2.15}^{2.08}$	${ }_{1}^{1,122}$	-0.01	NA
	40.0	2.22	1.084	-0.01	NA
	50.0	2.30	1,048	0.00	N/
	${ }_{7}^{60.0}$	2.39	${ }_{1,012}^{1,072}$	0.00	N/
	80.0	${ }_{2}^{2.56}$	994	0.00	NA
	90.0	${ }_{2} .65$	911	0.00	NA
	100.0	2.74	881	0.01	NA
	110.0	2.84	851	0.01	N/
	120.0 1300	2.94	${ }_{822}^{822}$	0.01	NA
	140.0	${ }_{3.14}$	769	0.02	NA

\wgf-fs \backslash cad \backslash Projects \backslash USNH \backslash dwgs \backslash Nashua \backslash River-Xing $\backslash I D-310 \backslash T I D-310 . d w s$

$\backslash \backslash \mathrm{mg}-\mathrm{fs} \backslash$ Cad \backslash Projects $\backslash \mathrm{USNH} \backslash \mathrm{dwgs} \backslash$ solem \backslash river-xings \backslash tid-318\TID-318.dwg

\backslash \wgf-fs \cad\Projects \USNH \dwgs \solem \river-xings \tid-319\TiD-319.dwg

